Gig Workers and Performance Pay

A Dynamic Equilibrium Analysis of an On Demand Industry

Cedefop, Eurofound and IZA Conference

Michal Hodor University of Pennsylvania

August 21, 2020

Almost a century ago, Henry Ford famously proclaimed that his customers could have a car painted any color they wanted – "so long as it is black."

Almost a century ago, Henry Ford famously proclaimed that his customers could have a car painted any color they wanted – "so long as it is black."

Almost a century ago, Henry Ford famously proclaimed that his customers could have a car painted any color they wanted – "so long as it is black."

Challenging Transformation Consumers Want More Product Customization, But Manufacturers May Not Be Able To Deliver

Almost a century ago, Henry Ford famously proclaimed that his customers could have a car painted any color they wanted – "so long as it is black."

Q: How?

to \$46 Ber - Juy 55, 2516

Almost a century ago, Henry Ford famously proclaimed that his customers could have a car painted any color they wanted – "so long as it is black."

Consumers Want More Product
Customization, But
Manufacturers May Not Be Able
To Deliver

Q: How?

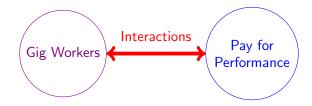
A: Flexible and responsive production chain

to Sale Berry - July 55, 2518

Adjustable labor force size

Adjustable labor force size

- Adjustable labor force size
- Responsive production rates



- Adjustable labor force size
- Responsive production rates

Gig Workers

- Adjustable labor force size
- Responsive production rates

Fixing Terminology

Worker's Type: Gig Worker and Permanent Worker

Gig Worker

Gig worker is a worker under contingent or alternative employment arrangements, with no implicit or explicit contract for long-term employment¹

¹U.S. Department of Labor, Bureau of Labor Statistics

Fixing Terminology

Worker's Type: Gig Worker and Permanent Worker

Gig Worker

Gig worker is a worker under contingent or alternative employment arrangements, with no implicit or explicit contract for long-term employment¹

Pay Scheme

Flat Wage: Hourly wage

Performance Pay: Bonus incentive pay

¹U.S. Department of Labor, Bureau of Labor Statistic

Fixing Terminology

Worker's Type: Gig Worker and Permanent Worker

Gig Worker

Gig worker is a worker under contingent or alternative employment arrangements, with no implicit or explicit contract for long-term employment¹

Pay Scheme

Flat Wage: Hourly wage

Performance Pay: Bonus incentive pay

Mass Customization

The mass production of individually customized good

U.S. Department of Labor, Bureau of Labor Statistics

Research Questions

Goal

What is the optimal labor management of a firm that operates an on-demand customized production process?

⇒ What are the optimal combinations of pay scheme and workforce composition for a firm to optimally operate a customized manufacturing process?

Labor Supply: Workers' Effort

What is the effect of bonus pay incentives on production and output quality?

Does production response vary by worker's type?

Q Labor Demand: Fundamentals of the Firm's Behavior What is the underlying cost structure defining the firm's hiring schedule?

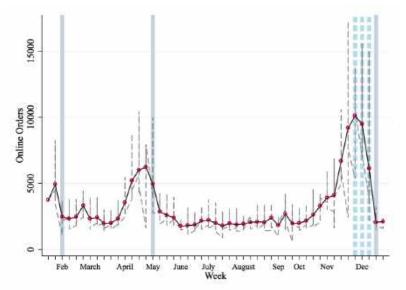
Data: Global Mid-Size Manufacturer

Product: Customized fashion accessories

Strict Production Policy

- Up to 4 days of production within plants
- Minimum lead time

Sophisticated Digital Production System


Documents employees daily production of low- and high-quality items

Labor Management

- Use on-demand workforce
- Switch between flat wage and performance-based wage

Product Demand

Average Daily Orders Over the Weeks of 2018

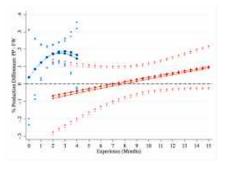
Production and Number of Workers

Combined Share of Gig by Month

On-The-Job Learning

Workers Data

	Worker		
	Permanent	Gig	t-Stat
Female	0.86	0.83	0.57
Age	32.27	24.27	4.85
Shift Length	7.22	8.00	-3.78
Experience Days	328.68	23.35	14.67
Total Production Adj	122.02	97.50	5.12
Low-Quality Production Adj	2.45	3.41	-2.88
Production Score Adj	155.41	138.67	1.65
N	44	216	

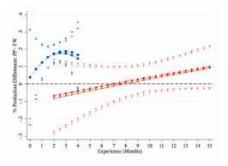

Notes: Production measures are adjusted to 8 hours of work.

Stylized Facts

$$\begin{split} \log(\mathbf{Y}_{id}) &= \gamma_0 + \beta_{\mathsf{Gig}} \mathsf{Gig}_i + \beta_{\mathsf{PP}} \mathsf{PP}_d + \beta_{\mathsf{Exp.}} \mathsf{Exp.}_{id} + \beta_{\mathsf{Exp.2}} \mathsf{Exp.}_{id}^2 + \beta_{\mathsf{Exp.} \times \mathsf{Gig}} \left(\mathsf{Exp.} \times \mathsf{Gig} \right)_{id} \\ &+ \beta_{\mathsf{Exp.} \times \mathsf{PP}} \left(\mathsf{Exp.} \times \mathsf{PP} \right)_{id} + \beta_{\mathsf{Exp.2} \times \mathsf{PP}} \left(\mathsf{Exp.}^2 \times \mathsf{PP} \right)_{id} + \beta_{\mathsf{PP} \times \mathsf{Gig}} \left(\mathsf{PP} \times \mathsf{Gig} \right)_{id} + \delta_i + C_{id} + \varepsilon_{id} \end{split}$$

Fact:

Gig and permanent workers hold different intrinsic motives and job perception



Stylized Facts

$$\begin{split} \log(Y_{id}) &= \gamma_0 + \beta_{\mathsf{Gig}} \mathsf{Gig}_i + \beta_{\mathsf{PP}} \mathsf{PP}_d + \beta_{\mathsf{Exp.}} \mathsf{Exp.}_{id} + \beta_{\mathsf{Exp.}^2} \mathsf{Exp.}_{id}^2 + \beta_{\mathsf{Exp.} \times \mathsf{Gig}} \left(\mathsf{Exp.} \times \mathsf{Gig} \right)_{id} + \beta_{\mathsf{Exp.}^2 \times \mathsf{Gig}} \left(\mathsf{Exp.}^2 \times \mathsf{Gig} \right)_{id} \\ &+ \beta_{\mathsf{Exp.} \times \mathsf{PP}} \left(\mathsf{Exp.} \times \mathsf{PP} \right)_{id} + \beta_{\mathsf{Exp.}^2 \times \mathsf{PP}} \left(\mathsf{Exp.}^2 \times \mathsf{PP} \right)_{id} + \beta_{\mathsf{PP} \times \mathsf{Gig}} \left(\mathsf{PP} \times \mathsf{Gig} \right)_{id} + \delta_i + C_{id} + \varepsilon_{id} \end{split}$$

Fact:

Gig and permanent workers hold different intrinsic motives and job perception

Sources of heterogeneity

- Effort cost
- Intrinsic motivation

Explored in the model

Overview of Equilibrium Model

- The Worker's Problem
 - Heterogeneous workers make daily effort choices
 - ▶ Take as given the pay scheme offered by the firm
 - Experience a daily productivity shock

Overview of Equilibrium Model

- The Worker's Problem
 - Heterogeneous workers make daily effort choices
 - ▶ Take as given the pay scheme offered by the firm
 - Experience a daily productivity shock
- 2 The Firm's Problem
 - Solves dynamic labor cost minimizing problem for one year
 - Makes weekly decisions regarding labor force composition and pay scheme offered
 - Subject to product demand shocks
 - Not imposing optimality of the wage structure

Overview of Equilibrium Model

- The Worker's Problem
 - Heterogeneous workers make daily effort choices
 - ▶ Take as given the pay scheme offered by the firm
 - Experience a daily productivity shock
- The Firm's Problem
 - Solves dynamic labor cost minimizing problem for one year
 - Makes weekly decisions regarding labor force composition and pay scheme offered
 - Subject to product demand shocks
 - Not imposing optimality of the wage structure
- Counterfactual Simulations:
 - Utilitarian approach
 - A central planer perspective

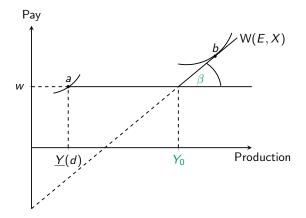
The Worker's Effort Decision

On each given day, d, a risk-neutral worker, i, wishes to maximize her utility

$$\max_{E_{i\nu d}\in(0,1]}\,W_{i\nu d}(E,X)-\,C_{i\nu d}(E,X)$$

s.t.

$$W_{i\nu d}(E, X) = \max \left\{ w, w + \beta (Y_{i\nu d}^{\mathsf{HQ}}(E, X) - Y_0) \right\}$$
$$\mathbb{E} \left[Y_{i\nu d}^{\mathsf{HQ}} \right] \ge \underline{Y}(d)$$


Production Function

Effort Cost

Solution Method: Indirect Inference

Wage Structure

$$W = egin{cases} w & ext{if Fixed wage} \\ \max\left[w,w+eta(Y^{ ext{HQ}}(E,X)-Y_0)
ight] & ext{if Performance pay} \end{cases}$$

The Firm's Problem

Overview

- Objective: Minimize labor cost
- Time: weeks in a calendar year
- Observables:
 - Number of permanent and gig workers
 - Wages (flat rate and bonuses)
 - ▶ Bonus pay structure: (Y_0, β)
- Constraints:
 - Demand uncertainty: ζ_t
 - Workers incentive compatibility constraints: $Y_t(E_t^*)$
- Decision:

$$d_k = \begin{pmatrix} P_{\text{ay Scheme}} & & L_{\text{aid Off}} \\ FW \text{ or PP} & New Permanent} & Permanent & New Gig Workers} \\ Z_t & , & P_t^N & , & P_t^L & , & G_t^N \end{pmatrix}$$

The Firm's Problem

Overview

- Objective: Minimize labor cost
- Time: weeks in a calendar year
- Observables:
 - Number of permanent and gig workers
 - Wages (flat rate and bonuses)
 - ▶ Bonus pay structure: (Y_0, β)
- Constraints:
 - Demand uncertainty: ζ_t
 - Workers incentive compatibility constraints: $Y_t(E_t^*)$
- Decision:

$$d_k = \underbrace{\begin{pmatrix} \text{Pay Scheme:} \\ \text{FW or PP} \\ \text{Z}_t \end{pmatrix}, \quad \text{New Permanent Permanent Permanent New Gig Workers}}_{\text{Actual decision}}, \quad \underbrace{\begin{pmatrix} \text{Pay Scheme:} \\ \text{PW or PP} \\ \text{P}_t \end{pmatrix}, \quad P_t^L}_{\text{Residual outcome}}, \quad \underbrace{\begin{pmatrix} \text{Pay Scheme:} \\ \text{PW or PP} \\ \text{Residual outcome} \end{pmatrix}}_{\text{Residual outcome}}$$

The Firm's Problem

Details

State Variables

 P_{t-1} : the number of permanent workers employed in week t-1 TC_{t-1} : the tenure record of permanent workers P_{t-1}

- Labor Force Tenure Record
 - Permanent workers

$$\mathsf{Tenure}\;\mathsf{Category}_t = \begin{cases} C_1 & \mathsf{if} & X_t \leq 3, \\ C_2 & \mathsf{if} & 3 < X_t \leq 30, \\ C_3 & \mathsf{if} & 30 < X_t \end{cases}$$

- Gig workers tenure evolves weekly

Dynamic Stochastic Model of Labor Force Hiring and Compensation Scheme

$$\begin{split} V_t\left(P_{t-1}, TC_{t-1}\right) &= \max_{k \in \mathcal{K}(t)} \left[V^k\left(P_t, TC_t\right)\right], \\ V_t^k\left(P_{t-1}, TC_{t-1}\right) &= \left\{ \begin{array}{l} -\mathsf{Cost}_t^k(P_{t-1}, TC_{t-1}) \\ +\psi \, \mathbb{E}\left[V_{t+1}\left(P_t, TC_t\right) \middle| d_k(t) = 1, P_{t-1}, TC_{t-1}\right] & \text{for } t < T, \\ -\mathsf{Cost}_t^k(P_T, TC_T) & \text{for } t = T \end{array} \right. \end{split}$$

such that,

$$egin{aligned} P_t &= (1-\mu)P_{t-1} - oldsymbol{P}_t^L + P_t^N \ P_t^L &\leq (1-\mu)P_{t-1} \ G_t &= G_t^N \ E_{it}^{*z} &= rg\max_{E} (U_{it} - C_{it}|z) \ \sum_{i=1}^{P_t} \mathbb{E}\left[Y_{it}(E^*,z|TR_{it})
ight] + \sum_{i=1}^{G_t} \mathbb{E}\left[Y_{it}(E^*,z|X_{it})
ight] = D_t(\zeta_t) \ \zeta_t &\sim \mathcal{N}(0,\sigma_D) ext{ serially independent} \end{aligned}$$

Labor Cost Function

$$Cost_{t}(P_{t}, TC_{t}) = \sum_{i=1}^{P_{t}} \mathbb{E}\left[W_{it}(E^{*}, z | TR_{it})\right] + \sum_{i=1}^{G_{t}} \mathbb{E}\left[W_{it}(E^{*}, z | X_{it})\right] + \left(\underbrace{R^{P}}_{Recruiting cost} \cdot P_{t}^{N} + \underbrace{L^{P}}_{Lay off cost} \cdot P_{t}^{L}\right) + \left(\underbrace{R^{G}}_{Recruiting cost} \cdot G_{t}^{N}\right)$$

Recruiting cost

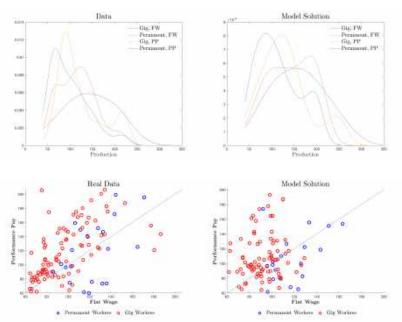
permanent workers

permanent

permanent

permanent

Solution Method: Simulated Maximum Likelihood


Labor Supply: Estimates of Structural Parameters

Parameters Description	Symbol	Estimate	SD
Total Factor Productivity			
Gig Worker	$lpha_{\sf g}$	48.26	4.1
Permanent	α_{p}	40.63	5.18
Personal Motivation			
Gig Worker	$\eta_{\sf g}$	300.023	7.5
Permanent Worker	$\eta_{\scriptscriptstyle P}$	194.91	5.7
Effort Cost Convexity			
Gig Worker	$\gamma_{\sf g}$	2.40	0.26
Permanent Worker	$\gamma_{\it p}$	1.3	0.18
Experience Elasticity	δ	0.1494	0.003
Effort Effect on Low Quality Production	ϕ_{E}	10.69	1.95
Experience Effect on Low Quality Production	ϕ_X	-38.57	5.95

Auxiliary Model: Parameters Fit

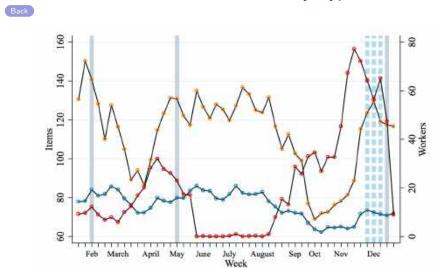
Model Fit

Model Fit

Labor Demand: Estimates of Structural Parameters

Parameters Description	Symbol	Estimate	SD
Separation rate	μ	0.07	0.001
Recruiting permanent worker	R^P	296.81	10.88
Laying off permanent worker	L^P	230.57	9.14
Recruiting gig worker	R^G	112.67	8.44

Back-of-the-envelope calculations


The firm could reduce the labor cost during peak seasons by 22% by integrating the hiring of gig workers and the implementation of bonus incentive pay.

Conclusions

Main Findings

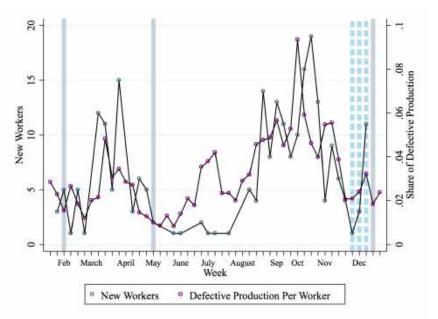
- Gig workers demonstrate a production response to incentives six times higher than that of permanent workers.
- Q Gig workers are facing higher effort cost than permanent workers
- Gig workers hold 50% higher personal motivation than permanent workers
- Output quality significantly increases with worker's experience, and decreases with worker's effort
- The firm could reduce the labor cost during peak seasons by 22% by integrating the hiring of gig workers and the implementation of bonus incentive pay.

Production and Number of Workers By Type

Production per Worker
 Gig Workers

Permanent Workers

Share of Gig Workers by Month

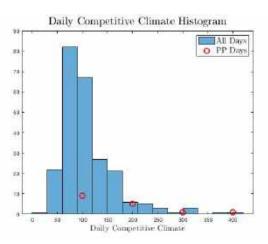

Table: Share of Gig Workers

	Mean	SD	Ν
February	0.408	0.497	49
March	0.537	0.502	67
April	0.608	0.491	79
May	0.565	0.499	85
June	0.091	0.292	33
July	0.057	0.236	35
August	0.279	0.454	43
September	0.644	0.482	73
October	0.842	0.367	95
November	0.843	0.365	140
December	0.723	0.449	141
Total	0.614	0.487	840

Defective Production and Gig Workers

Empirical Evidence: Gig Workers and Production

			endent Variable:	
	Log	Log of Worker's Daily High-Quality Production (Adj)		
	(1)	(2)	(3)	(4)
Performance Pay	0.101**	-0.0211	0.101**	-0.0159
	(0.0147)	(0.116)	(0.0149)	(0.0617)
Daily Demand	0.0396**	0.0382**	0.0320**	0.0323**
	(0.00210)	(0.00211)	(0.00192)	(0.00192)
Daily Number of Workers	-0.00468**	-0.00469**	-0.00197**	-0.00193**
	(0.000315)	(0.000318)	(0.000318)	(0.000324)
Gig Worker	-0.244**	-0.199**		
_	(0.0744)	(0.0837)		
Experience	0.0167	0.0214	-0.0373	-0.0322
	(0.0187)	(0.019)	(0.0339)	(0.0340)
Gig Worker × Experience	0.0238	0.0860	0.432**	0.422**
	(0.0508)	(0.0544)	(0.0254)	(0.0282)
Experience ²	-0.00176**	-0.00161*	0.00183	0.00194
	(0.000849)	(0.000860)	(0.00355)	(0.00355)
Gig Worker × Experience ²	0.0215*	0.00954	-0.0937**	-0.0970**
	(0.0124)	(0.0129)	(0.00718)	(0.00827)
Performance Pav× Gig Worker		0.394**		
		(0.122)		
Performance Pay× Gig Worker × Experience		-0.273**		0.108*
, , , , , , , , , , , , , , , , , , , ,		(0.0597)		(0.0643)
Performance Pay × Gig Worker × Experience ²		0.0512**		-0.0152
		(0.0147)		(0.0153)
Constant	4.943**	4.860**	4.782**	4.776**
	(0.0741)	(0.0824)	(0.0549)	(0.0551)
Gender Interactions Team FF	No	Yes	No	Yes
	Yes	Yes	Yes	Yes
Individual FE N	No 8179	No 8179	Yes 8179	Yes 8179
N R ²				
K"	0.242	0.247	0.433	0.434


Standard errors are in parentheses.

Controls: Day of the week indicator, holiday dummy, repeated employment, and employment in more than one department.

Demand is measured in thousands of units, and experience is measured in groups of 30 days. * p < 0.10, ** p < 0.05

Competitive Climate

$$\kappa_d := \left(\frac{\mathsf{Daily Demand}}{\mathsf{Daily \# of Workers}} \right)$$

Weight Matrix Estimation

Estimation is done in two steps.

- At the first step it is set to be equal to the inverse of a diagonal matrix with the standard errors of the parameters of the auxiliary model on the main diagonal.
- 2 The second step calculates the variance-covariance matrix of the simulated auxiliary parameters, $\psi_{\rm sim}$,

$$\hat{\mathbf{W}} = \frac{1}{L} \sum_{l}^{L} \left(\psi_{\mathsf{sim}}^{l}(\sigma_{\varepsilon}^{1}) - \frac{1}{L} \sum_{l}^{L} \psi_{\mathsf{sim}}^{l}(\sigma_{\varepsilon}^{2}) \right) \cdot \left(\psi_{\mathsf{sim}}^{l}(\sigma_{\varepsilon}^{1}) - \frac{1}{L} \sum_{l}^{L} \psi_{\mathsf{sim}}^{l}(\sigma_{\varepsilon}^{2}) \right)^{\prime}$$

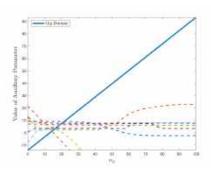
where σ_{ε}^{j} , j=1,2 are different sets of L realizations of the idiosyncratic production shock, and L is equal to 1000.

Solution Process Details

- Solve for workers' daily effort decision for a vector of possible values of structural parameters, based on the FOC of the problem
 - ▶ Flat Wage: $\beta = 0$

$$\frac{\kappa_d}{X_{id}} \gamma \left(E_{id}^{*FW} \right)^{(\gamma - 1)} = \eta_{id}$$

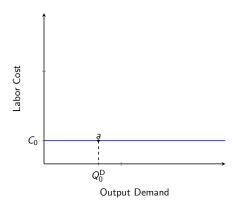
• Performance Pay: $\beta > 0$

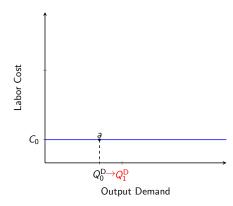

$$\beta \left[1-\rho_{id}\right] \alpha X_{id}^{\delta} \mathrm{e}^{\varepsilon_{id}} \mathbb{I}_{\mathsf{PP}} + \eta_{i} = \frac{\kappa_{d}}{X_{id}} \gamma \left(E_{id}^{*\mathsf{PP}}\right)^{\left(\gamma-1\right)} + \beta \left[\rho_{id,E}\right] \alpha \left(E_{id}^{*\mathsf{PP}}\right) X_{id}^{\delta} \mathrm{e}^{\varepsilon_{id}} \mathbb{I}_{\mathsf{PP}}$$

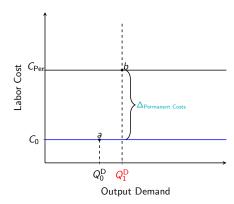
- ② Calculate the optimal production based on the solution and the set of chosen parameters
- **3** Estimate the auxiliary model coefficients $\psi_{sim}(\Theta)$
- Search for $\hat{\Theta}_{\omega}$ that minimize the distance between the auxiliary parameters estimated on the actual data and the auxiliary parameters estimated from the simulated data

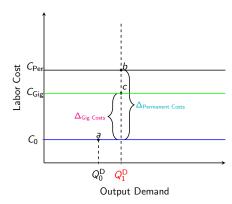
Identification of Structural Parameters

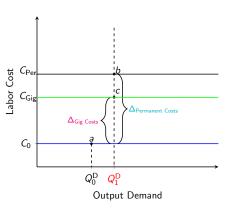
- Exogenous variation in observable variables and the first order conditions solution Experience, pay scheme, number of workers, demand
- Monte Carlo Simulations Start with known parameters and recover the value of the parameters precisely using the estimation procedure
- Perturbation Examine the relationship between the parameter of the structural model and parameters of the auxiliary model obtained by simulations

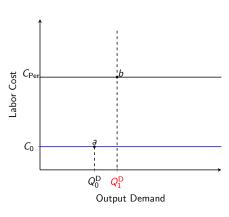

Model Fit of Auxiliary Parameters

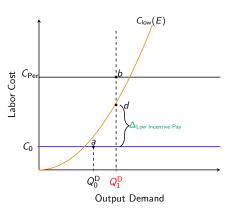

Auxiliary Parameters	Simulated	Target
$eta_{ extsf{0}}$	85.71	85.88
eta_{PP}	-3.07	-4.33
eta_{Gig}	-13.21	-13.76
$\beta_{Exp.}$	2.74	2.12
$\beta_{E \times p.^2}$	-0.047	-0.023
etaFemale	11.45	12.69
eta_{Daily} Demand	1.97	2.74
$eta_{PP imes Gig}$	22.97	23.25

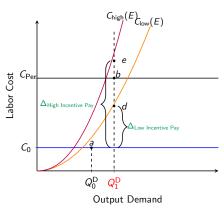


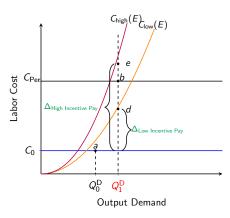

Production Averages by Pay Scheme and Worker's Type


Parameters Description	Data	Model Solution
Gig worker under Flat Wage		
0-20	88.086	80.132
20-40	105.99	105.27
40-60	123.19	118.84
Gig worker under Performance Pay		
0-20	137.52	130.94
20-40	118.89	115.12
40-60	121.99	120.15
Permanent worker under Flat Wage		
0-30	122.90	110.82
30-90	119.79	114.17
90-120	115.28	114.96
120-210	110.75	117.75
>210	133.6	128.48
Permanent Worker Under Performance Pay		
0-270	108.78	110.39
270-360	120.06	121.50
>360	154.85	150.99

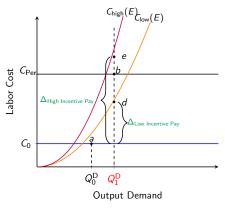





- **1** If Δ Gig Costs $< \Delta$ Permanent Costs
- ⇒ Hire gig workers before anticipated demand peaks
 - On-the-job learning
 - Recruiting costs

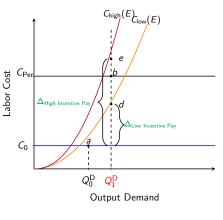

- **1** If $\Delta \text{Gig Costs} < \Delta \text{Permanent Costs}$
- ⇒ Hire gig workers before anticipated demand peaks
 - On-the-job learning
 - Recruiting costs

- **1** If $\Delta \text{Gig Costs} < \Delta \text{Permanent Costs}$
- ⇒ Hire gig workers before anticipated demand peaks
 - On-the-job learning
 - Recruiting costs


- **1** If Δ Gig Costs $< \Delta$ Permanent Costs
- ⇒ Hire gig workers before anticipated demand peaks
 - On-the-job learning
 - Recruiting costs

- **1** If Δ Gig Costs $< \Delta$ Permanent Costs
- ⇒ Hire gig workers before anticipated demand peaks
 - On-the-job learning
 - Recruiting costs
- 2 If

 $\Delta Incentive \ Pay \ \textbf{Per} < \Delta Permanent \ Costs$


⇒ Implement performance-based scheme at times of demand peaks

- **1** If Δ Gig Costs $< \Delta$ Permanent Costs
- ⇒ Hire gig workers before anticipated demand peaks
 - On-the-job learning
 - Recruiting costs
 -) If

 Δ Incentive Pay **Per** $< \Delta$ Permanent Costs

- \Rightarrow Implement performance-based scheme at times of demand peaks
- $\begin{array}{ll} \textbf{ If } & \#\mathsf{Gig}_3 < \#\mathsf{Gig}_1 \\ & \Delta\mathsf{Gig}_3(\mathsf{Incentive}) < \Delta\mathsf{Gig}_1(\mathsf{Flat wage}) \end{array}$
- ⇒ Hire gig workers and implement performance-based scheme at times of demand peaks

- **1** If Δ Gig Costs $< \Delta$ Permanent Costs
- ⇒ Hire gig workers before anticipated demand peaks
 - On-the-job learning
 - Recruiting costs
 - If

 $\Delta Incentive \ Pay \ \textbf{Per} < \Delta Permanent \ Costs$

- \Rightarrow Implement performance-based scheme at times of demand peaks
- $\begin{array}{ll} \textbf{ If } & \#\mathsf{Gig}_3 < \#\mathsf{Gig}_1 \\ & \Delta\mathsf{Gig}_3(\mathsf{Incentive}) < \Delta\mathsf{Gig}_1(\mathsf{Flat wage}) \end{array}$
- ⇒ Hire gig workers and implement performance-based scheme at times of demand peaks

Related Literature

Payment Scheme

- ► Labor & Personnel Economics Shearer (2004); Bellemare & Shearer (2011); Freeman & Kleiner (2005)
- ▶ Operational Decisions in the Gig-Economy Chen & Sheldon (2016); Hall et al. (2018); Allon et al. (2018)
- **▶** Efficiency Wages
- Tournament Theory

Workforce Composition

► Personnel Scheduling
Pinker & Larson (2003); Bard (2004b); Stratman et al. (2004); Dong & Ibrahim (2017)

This Paper

 Structural estimation of an equilibrium framework with decisions related to the payment scheme (contract design) and the workforce composition

Production Function

Total Production

$$\begin{split} Y_{i\nu d}^{\mathsf{Total}} &= \alpha_{\nu} \mathsf{E}_{i\nu d} \mathsf{X}_{i\nu d}^{\delta} \mathsf{e}^{\varepsilon_{id}} \\ \alpha_{\nu} &= \alpha_{p} \mathcal{I} \{ \mathsf{Permanent}_{i} = 1 \} + \alpha_{g} \mathcal{I} \{ \mathsf{Gig}_{i} = 1 \} \\ \varepsilon_{i\nu d} &\sim \textit{N}(0, \sigma_{\varepsilon}) \end{split}$$

High Quality Production

$$Y_{i\nu d}^{\mathsf{HQ}} = \left[1 - ar{
ho}_{i
u d}(E,X)
ight]Y_{i
u d}^{\mathsf{Total}}$$

Defective Production Probability

$$\bar{\rho}_{i\nu d}(E,X) = \frac{\exp\left(\phi_E E_{i\nu d} + \phi_X X_{i\nu d}\right)}{1 + \exp\left(\phi_E E_{i\nu d} + \phi_X X_{i\nu d}\right)}$$

Effort Cost Function

$$\begin{split} C_{i\nu d}(E,X) &= \frac{\kappa_d}{X_{i\nu d}} E_{i\nu d}^{\gamma_\nu} - \eta_\nu E_{i\nu d} \\ \text{Such that: } \gamma_\nu &= \gamma_p \mathcal{I}\{Permanent_i = 1\} + \gamma_g \mathcal{I}\{Gig_i = 1\} \\ \eta_\nu &= \eta_p \mathcal{I}\{Permanent_i = 1\} + \eta_g \mathcal{I}\{Gig_i = 1\} \end{split}$$

Effort Cost Function

$$\begin{split} C_{i\nu d}(E,X) &= \frac{\kappa_d}{X_{i\nu d}} E_{i\nu d}^{\gamma_\nu} - \eta_\nu E_{i\nu d} \\ \text{Such that: } \gamma_\nu &= \gamma_\rho \mathcal{I}\{\textit{Permanent}_i = 1\} + \gamma_g \mathcal{I}\{\textit{Gig}_i = 1\} \\ \eta_\nu &= \eta_\rho \mathcal{I}\{\textit{Permanent}_i = 1\} + \eta_g \mathcal{I}\{\textit{Gig}_i = 1\} \end{split}$$

Assumptions

- A1 $\eta_{\nu} > 0 \Rightarrow$ Employees supply positive effort under a flat wage.
- A2 $\gamma > 1 \Rightarrow$ Convex in effort, $C_{EE} > 0$.
- A3 More experienced workers face a lower marginal effort-cost (other things equal): $C_{EX} < 0$

Back

Solution Method: Indirect Inference

Parameters |

$$\Theta_{\omega} = (\alpha_{g}, \alpha_{p}, \delta, \eta_{g}, \eta_{p}, \gamma_{g}, \gamma_{p}, \phi_{E}, \phi_{X}, \sigma_{\varepsilon})$$

Auxiliary Parameters

Let $\psi(\Theta_{\omega})$ be the vector auxiliary parameters

General Idea

Repeat simulations to find the data-generating parameters, $\hat{\Theta}_{\omega}$, that minimizes the distance between the auxiliary parameters and the parameters estimated from the actual data,

$$\hat{\Theta}_{\omega} = \arg\min_{\Theta_{\omega}} \Big(\hat{\psi}_{\mathsf{data}} - \psi_{\mathsf{sim}}(\Theta_{\omega}) \Big) \mathsf{W} \Big(\hat{\psi}_{\mathsf{data}} - \psi_{\mathsf{sim}}(\Theta_{\omega}) \Big)'$$

where W is a symmetric and positive semi-definite weighting matrix.

Weight Matrix Details Identification | Solution Process Details | Back

Solution Method: Simulated Maximum Likelihood Parameters

$$\Theta_F = (\mu, R^P, L^P, R^G)$$

Likelihood

The probability that the firm is observed to choose alternative k_t at week t is defined by

$$\mathcal{P}\left(k_t|\Omega_t^d\right) = \mathcal{P}\left(\max_j\left[V_{jt}(\Omega_t)\right]\right)$$

Define the likelihood function as follows

$$\mathcal{P}\left(k_{1},...,k_{T}|\Omega_{1}^{d}\right)=\prod_{t=1}^{T}\mathcal{P}\left(k_{t}|\Omega_{t}^{d}\right)$$

- The probabilities are calculated using the Kernel Smoothed Frequency Simulator proposed by McFadden (1989)
- Use Keane and Wolpin (1994) Simulation Interpolation Method to deal with a state space that exponentially increases with the number of permanent workers