Multi-Layer Profit Sharing and Innovation

Filippo Belloc University of Siena Department of Economics and Statistics

Cedefop-Eurofound-IZA Conference on workplace and management practices 20-21 August, 2020

Multi-layer profit sharing

PS widely used worldwide to boost short-run productivity

- 62% of firms in the US (NBER, 2010) and 30.2% in EU (EC, 2014)
- rarely covers the workers in a firm all together

THE WALL STREET JOURNAL.

Citi Sets Up Profit-Share Plan

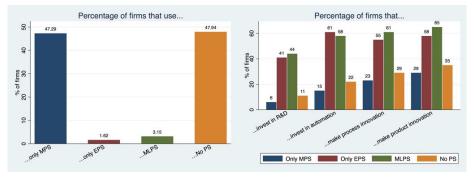
Citigroup Inc. instituted a new profit-sharing plan for a few dozen top executives, giving them a small share of the company's profits over the next two years.

Citigroup said the plan, which could award four top executives more than \$11.9 million based on results in 2011 and 2012, "further aligns compensation with the long-term performance of Citi."

THE WALL STREET JOURNAL. American Airlines Reverses Course on Employee Profit-Sharing

American Airlines Group Inc., which hasn't allowed employee profitsharing in new labor contracts reached since its late 2013 merger with US Airways, changed course Wednesday and said it would offer a program that would pay 5% of pretax profits to all but management employees based on this year's earnings.

This paper


Has PS an effect on innovation? Does this differ across firm layers?

- if PS is based on short-run profits, long-run effects are not obvious
- managers and non-managers may have different behaviours under PS
- previous literature is silent on both questions (literature)
- Why it is important the model
 - motivating employees to exert innovative efforts is a challenge for firms
 - optimal pay contracts may be fundamentally different across layers

In this paper

- EES-INAPP data (2009-2014): panel of \sim 10000 Italian firms
- PS as cash bonus based on yearly profits (favourability principle)

Motivation

Legend:

- only MPS: PS for managers only (executives/non-executive managers)
- only EPS: PS for non-managers only (non-managerial supervisors, white/blue-collars)
- MLPS: PS at both layers
- no PS: PS not used an any layer

Baseline regression

$$\overbrace{\mathsf{Innovation}_{f,w}}^{\text{in 2012-14}} = \beta_0 + \overbrace{\beta_1 \text{ MPS}_{f,w-1} + \beta_2}^{\text{in 2009}} \operatorname{EPS}_{f,w-1} + \mathbf{bX}_{f,w-1} + \operatorname{sector FE}_{f,w} + \operatorname{region FE}_{f,w} + \varepsilon_{f,w}$$
(1)

 $\mathbf{X}_{f,w-1}$ (2009): individual-based PRP, investments in R&D and automation, voluntary separations, workforce and CEO controls (education, age, gender), family ownership, company type, span of control, multi-firm group, exporting firm, unionization, # employees, revenues, years since incorporation

Why endogeneity is not a (big) concern

- reverse causality: past innovation under-performance does not correlate with new PS adoption (anyway it would cause downward bias)
- worker sorting: PS does not correlate with average wage (anyway worse workers would be those attracted by PS: downward bias again)

Baseline results

	[1]	[2]	[3]	[4]	[5]	[6]
	The firm					
	MAKES	MAKES	MAKES	MAKES	MAKES	MAKES
	ANY INN.					
MPS	0.008	0.008	0.011	0.011	-0.014	0.012
	(0.012)	(0.012)	(0.012)	(0.012)	(0.022)	(0.022)
EPS	0.082***	0.061**	0.058**	0.055**	0.086**	0.112**
	(0.027)	(0.027)	(0.027)	(0.021)	(0.043)	(0.053)
Individual-based PRP	-0.034	-0.044	-0.040	-0.049*	-0.025	-0.017
	(0.031)	(0.031)	(0.031)	(0.029)	(0.055)	(0.066)
Investments in R&D	NO	0.165***	NO	NO	NO	NO
		(0.017)				
Investments in automation	NO	`NO ´	0.108***	NO	NO	NO
			(0.012)			
Innovation in 2007-09	NO	NO	NO	0.215***	NO	NO
				(0.009)		
Other firm-level controls	YES	YES	YES	YES	YES	YES
Sector and region dummies	YES	YES	YES	YES	YES	YES
EES-INAPP waves	2010/15	2010/15	2010/15	2010/15	2010/15	2010/15
Innovation over 2004-2006	ANY	ANY	ANY	ANY	=0	=1
# of obs.	7051	7018	7018	7051	2461	1759
Estimation	LOGIT	LOGIT	LOGIT	LOGIT	LOGIT	LOGIT

Multi-layering

Run:

Innovation_{*f*,*w*} =
$$\beta_0 + \beta_1$$
 Only MPS_{*f*,*w*-1} + β_2 Only EPS_{*f*,*w*-1} + β_3 MLPS_{*f*,*w*-1} + **bX**_{*f*,*w*-1} + sector FE_{*f*,*w*} + region FE_{*f*,*w*} + $\varepsilon_{f,w}$ (2)

- ▶ and χ^2 -test against the null that H_0 : $\beta_3 \beta_2 = 0$
- Endogeneity: sample split based on MPS=0/1 in 2009 and IV for EPS by sectoral share of firms adhering to II-level agreements in 2006

Effects of multi-layer PS

		7-3	2-3	
	[1]	[2]	[3]	[4]
	The firm	The firm	The firm	The firm
	MAKES	MAKES	MAKES	MAKES
	ANY INN.	ANY INN.	ANY INN.	ANY INN.
			MPS=0	MPS=1
Only MPS	0.005	0.009		
	(0.012)	(0.012)		
(β_2) Only EPS	0.077**	0.053*		
	(0.031)	(0.030)		
(β ₃) MLPS	0.102***	0.066*		
(, , , , , , , , , , , , , , , , , , ,	(0.037)	(0.036)		
EPS (instrumented)	. ,	. ,	4.054***	2.763*
			(0.415)	(1.521)
$H_0: \beta_3 - \beta_2 = 0 [p-value]$	[0.577]	[0.750]		
Individual-based PRP	-0.038	-0.050*	-1.441***	-0.950*
	(0.031)	(0.029)	(0.153)	(0.517)
Innovation in 2007-09	NO	0.212***	0.309***	0.516***
		(0.009)	(0.118)	(0.139)
Other firm-level controls	YES	`YES ´	`YES ´	`YES ´
Sector and region dummies	YES	YES	YES	YES
EES-INAPP waves	2010/15	2010/15	2010/15	2010/15
# of obs.	7379	7379	4248	3180
Estimation	LOGIT	LOGIT	IV-LOGIT	IV-LOGIT
			First	STAGE
II-level agreements in 2006 (sector avg.)			0.353***	0.339***
- (0)			(0.068)	(0.070)

Additional checks

Linear MPS and EPS effects

- Alternative extensions of layers alternative layers
- Disentangling process/product innovation prod/proc innovation
- Propensity score matching psm

Multi-layering

- Alternative specifications interactions
- Disentangling process/product innovation ML prod/proc innovation

Conditional marginal effects

Measure the conditional margins of EPS as

$$\frac{\partial \operatorname{Pr}(\operatorname{Innovation}_{f,w} = 1)}{\partial \operatorname{EPS}_{f,w-1}} = \frac{e^{\beta x}}{(1 + e^{\beta x})^2} \frac{\partial (\beta x)}{\partial \operatorname{EPS}_{f,w-1}}$$

at [MPS_{f,w-1} = (0 1)|C_{f,w-1}, E(X_{f,w-1})]

with $C_{f,w-1}$ = each of a set of firm characteristics

Main results: EPS effects change across firm features graphs

- decrease if size is 2000+ employees (1/N problem) 1/N
- are zero when unionization > 50%
- decrease if non-managers per manager are 500+
- are 10% higher for exporters
- are lower when the workforce is older and more educated

Conclusions

- First paper measuring PS effects on innovation along firm hierarchy
- Take-away message: the optimal contracts that motivate innovation may be fundamentally different across different layers
 - short-run PS has no effect when used for managers
 - but it works well when used for non-managers: $Pr(Inn) \uparrow$ by 5%-15%
 - many moderating factors (unions, workforce characteristics, exporting)

Policy implications

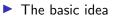
- for business strategists: different compensation schemes across layers
- for legal policy-makers: improve tax exemptions on company-wide cash bonuses for non-managers

Thank you!

Filippo Belloc U of Siena filippo.belloc@unisi.it https://sites.google.com/site/filippobelloc/

Related literatures

Long versus short-term pay


- more innovation if CEOs are rewarded based on long-term pay (Hothausen et al., 1995 JAE; Lerner and Wulf, 2007 RES; Manso, 2011 JF; Ederer and Manso, 2013 MS) and if so are paid also non-executive employees (Chang et al., 2015 JFE)
- Group versus individual-based pay
 - group incentive pay promotes teamwork (Fitzroy and Kraft, 1987 QJE), productivity (Doucouliagos et al., 2019 BJIR) and innovation on average (Aerts et al, 2015 ICC) but suffers from free-riding (Drago and Garvey, 1998 JLE)

Dearth of evidence on how...

- short-run PS at each firm layer influences innovation
- PS of managers affects the power of incentives of non-managers
- these effects are moderated by the span of control and free-riding

Framework

- innovation projects require the firm to perform poorly today
 - but allow it to gain greater profits tomorrow
- managers have outside options whose value depends on early profits
 non-managers don't
- under PS, managers may want more profits today than non-managers
 - locked-in non-managers may want postponing profits (innovation)
- managers may push non-managers to take conservative strategies
 - if have the power to do so
- under fixed pay, innovation is sub-optimal for both types of agent

Framework / cont'd

Agent i ∈ {M, E} can take action j ∈ {D, S} (one or both)
D costs c_i^D = 0, generates τπ^D in t₁ and (1 − τ)π^D in t₂
S costs c_i^S > 0, generates 0 in t₁ and π^S in t₂, with π^S > π^D
S is not contractible and expected to succeed by E_i[p^S]

and obtains

$$U_{i}^{j} = \begin{cases} \tau \pi^{D} + \frac{(1-\tau)\pi^{D}}{1+\delta_{i}} & \text{if } j = D\\ \\ -c_{i}^{S} + \tau \pi^{D} + \underbrace{\overline{\mathbb{E}_{i}[p^{S}]\Delta\pi\alpha_{i}}_{1+\delta_{i}} + (1-\tau)\pi^{D}}_{1+\delta_{i}} & \text{if } j = S \end{cases}$$

where $\Delta \pi \equiv \pi^j - \overline{\pi}$ and $\pi^D = \overline{\pi}$

PS at layer *i* influences incentives to innovate of agent *i* with PS, S is taken if δ_i < E_i[p^S]Δπα_i-c^S_i ≡ δ_i

Framework / cont'd

- \blacktriangleright PS at layer *E* may also influence incentives to innovate of agent *M*
 - suppose that agents can leave after t₁, with E having no outside option and M receiving

$$\omega_{Mt1} = \begin{cases} \frac{2\tau\pi^{D}}{1+\delta_{M}} \\ \frac{2\tau\pi^{D}-c_{M}-c_{E}}{1+\delta_{M}} \\ \frac{2\tau\pi^{D}-c_{M}}{1+\delta_{M}} \\ \frac{2\tau\pi^{D}-c_{E}}{1+\delta_{M}} \end{cases}$$

if j = D for both agents if j = S for both agents if j = S for M and j = D for Eif j = S for E and j = D for M

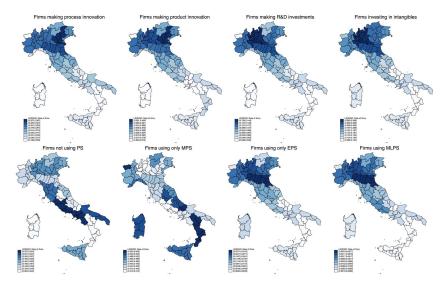
• under $\delta_i < \overline{\delta}_i \ \forall i, M$ takes D and leaves if

$$0 < \begin{cases} \frac{2\tau\pi^{D} - (1-\tau)\pi^{D} - \mathbb{E}_{M}[p^{S}]\Delta\pi\alpha_{M} - c_{E}^{S}}{1+\delta_{M}} & \text{if MLPS is used} \\ \frac{2\tau\pi^{D} - (1-\tau)\pi^{D} - \mathbb{E}_{M}[p^{S}]\Delta\pi\alpha_{M}}{1+\delta_{M}} + c_{M}^{S} & \text{if only MPS is used} \\ 2\tau\pi^{D} - (1-\tau)\pi^{D} - c_{E}^{S} & \text{if only EPS is used} \\ 2\tau\pi^{D} - (1-\tau)\pi^{D} & \text{if PS is not used at any layer} \end{cases}$$

${\sf Framework}\ /\ {\sf cont'd}$

 \blacktriangleright PS at layer M too may influence incentives to innovate of agent E

- ω_{Mt1} is higher when E chooses D
- assume that there is no PS at layer M and M has power over c_E^S
- if EPS is in place, c^S_E decreases the likelihood that agent E chooses S: so M has an incentive to increase c^S_E, but
 - if *M*'s action is successful and $\delta_E > \overline{\delta}_E$, *E* takes $D \to \omega_{Mt1} \uparrow$
 - if M's action is unsuccessful and δ_E < δ_E, E takes S → ω_{Mt1}↓ (if M expects it will be so, he may be tempted to reduce c_E^S)
- Wrap-up: whether PS policies influence innovation at the firm level is an empirical question



Descriptive stats, by PS policy

	ONLY EPS	ONLY MPS	EPS & MPS	without PS
INNOVATION ACTIVITY				
Invested in R&D (0/1)	0.412 (0.492)	0.057 (0.232)	0.436 (0.496)	0.109 (0.312)
Invested in automation $(0/1)$	0.607 (0.488)	0.146 (0.353)	0.579 (0.493)	0.221 (0.415)
Introduced process innovation $(0/1)$	0.549 (0.497)	0.227 (0.419)	0.609 (0.488)	0.295 (0.456)
Introduced product innovation $(0/1)$	0.584 (0.493)	0.288 (0.453)	0.647 (0.477)	0.346 (0.475)
Workforce's characteristics				
Share of employees with tertiary education	0.118 (0.155)	0.089 (0.203)	0.176 (0.181)	0.115 (0.208)
Share of employees 50+ years old	0.268 (0.154)	0.196 (0.259)	0.280 (0.151)	0.211 (0.219)
CEO'S CHARACTERISTICS				
The CEO has tertiary education (0/1)	0.546 (0.155)	0.220 (0.414)	0.645 (0.478)	0.294 (0.455)
The CEO is 50+ years old $(0/1)$	0.704 (0.456)	0.624 (0.484)	0.729 (0.444)	0.628 (0.483)
The CEO is male $(0/1)$	0.935 (0.246)	0.838 (0.367)	0.949 (0.219)	0.854 (0.352)
Owner type				
A family or an individual $(0/1)$	0.497 (0.500)	0.927 (0.258)	0.397 (0.489)	0.831 (0.374)
A financial institution (0/1)	0.217 (0.413)	0.035 (0.185)	0.331 (0.470)	0.074 (0.262)
Another firm $(0/1)$	0.156 (0.363)	0.027 (0.162)	0.182 (0.386)	0.062 (0.241)
Other type of owner $(0/1)$	0.128 (0.334)	0.008 (0.092)	0.088 (0.283)	0.032 (0.176)
Span of control				
# of employees $/ #$ of managers	60.13 (64.97)	14.09 (59.77)	67.39 (96.05)	40.92 (87.32)
Industrial relations				
Unionization rate	0.376 (0.270)	0.116 (0.240)	0.357 (0.238)	0.150 (0.254)
Rate of voluntary separations	0.024 (0.060)	0.054 (0.361)	0.026 (0.145)	0.058 (0.473)
The firm uses individual-based PRP $(0/1)$	0.313 (0.464)	0.011 (0.106)	0.323 (0.468)	0.015 (0.124)
Corporate form				
The firm is a limited company $(0/1)$	0.974 (0.159)	0.415 (0.492)	0.962 (0.190)	0.801 (0.399)
Other characteristics				
# of employees	373 (5004.69)	28 (192.29)	570 (3726.14)	36 (178.900)
Total revenues (mln euro)	263.88 (4619.80)	8.46 (78.50)	137.11 (558.88)	12.37 (126.41)
The firm is an exporter $(0/1)$	0.522 (0.499)	0.142 (0.349)	0.587 (0.492)	0.251 (0.433)
The firm belongs to a group $(0/1)$	0.454 (0.498)	0.076 (0.266)	0.630 (0.482)	0.131 (0.338)
# of years since incorporation	35.75 (18.23)	25.43 (24.31)	37.24 (30.74)	26.87 (26.04)

Distribution of firms, by PS and innovation

Alternative extensions of layers

	[1]	[2]	[3]	[4]	[5]
	The firm				
	MAKES	MAKES	MAKES	MAKES	MAKES
	ANY INN.				
MPS (non-executives + non-managerial supervisors)	0.018				
	(0.044)				
EPS (white/blue collars)	0.074**				
	(0.036)				
MPS (non-executives)		-0.035	-0.042	-0.033	-0.037
		(0.053)	(0.053)	(0.012)	(0.051)
EPS (white/blue collars + non-managerial supervisors)		0.087***	0.067**	0.063**	0.056**
		(0.028)	(0.029)	(0.029)	(0.028)
CEO's pay based on PS	0.010	0.010	0.009	0.011	0.013
	(0.013)	(0.013)	(0.013)	(0.013)	(0.012)
CEO's pay based on shares/stock options	0.006	0.006	0.011	0.019	0.018
	(0.075)	(0.075)	(0.074)	(0.074)	(0.073)
CEO's pay based on PS and shares/stock options	-0.008	-0.005	-0.004	-0.001	-0.002
	(0.050)	(0.050)	(0.050)	(0.050)	(0.049)
Individual-based PRP	-0.037	-0.037	-0.047	-0.042	-0.048
	(0.031)	(0.031)	(0.032)	(0.031)	(0.030)
Investments in R&D	NO	NO	0.164***	NO	NO
			(0.017)		
Investments in automation	NO	NO	NO	0.105***	NO
				(0.012)	
Innovation in 2007-09	NO	NO	NO	NO	0.216***
					(0.009)
Other firm-level controls	YES	YES	YES	YES	YES
Sector and region dummies	YES	YES	YES	YES	YES
EES-INAPP waves	2010/15	2010/15	2010/15	2010/15	2010/15
# of obs.	6928	6928	6896	6896	6928
Estimation	LOGIT	LOGIT	LOGIT	LOGIT	LOGIT

Process and product innovation

	[1]	[2]	[3]	[4]	[5]	[6]
	The firm					
	MAKES	MAKES	MAKES	MAKES	MAKES	MAKES
	PROCESS	PRODUCT	PROCESS	PROCESS	PRODUCT	PRODUCT
	INN.	INN.	INN.	INN.	INN.	INN.
MPS	0.014	0.007	0.006	0.001	-0.010	-0.005
	(0.011)	(0.011)	(0.021)	(0.019)	(0.022)	(0.020)
EPS	0.056**	0.041*	0.070*	0.155***	0.143***	0.100**
	(0.022)	(0.024)	(0.038)	(0.042)	(0.041)	(0.047)
Individual-based PRP	-0.048*	-0.014	0.028	-0.060	-0.003	0.016
	(0.026)	(0.028)	(0.049)	(0.057)	(0.054)	(0.057)
Investments in R&D	0.059***	0.097***	NO	NO	NO	NO
	(0.015)	(0.016)				
Investments in automation	0.032***	0.040***	NO	NO	NO	NO
	(0.012)	(0.012)				
Innovation in 2007-09	0.168***	0.211***	NO	NO	NO	NO
	(0.009)	(0.009)				
Other firm-level controls	YES	YES	YES	YES	YES	YES
Sector and region dummies	YES	YES	YES	YES	YES	YES
EES-INAPP waves	2010/15	2010/15	2010/15	2010/15	2010/15	2010/15
Innovation over 2004-2006	ANY	ANY	=0	=1	=0	=1
# of obs.	7005	7004	2461	1720	2461	1759
Estimation	LOGIT	LOGIT	LOGIT	LOGIT	LOGIT	LOGIT

Propensity score matching

	ATT: MPS EFFECTS				
	[1]	[2]	[3]		
	The firm	The firm	The firm		
	MAKES	MAKES	MAKES		
	ANY INN.	ANY INN.	ANY INN.		
MPS	0.023	0.015	0.016		
	(0.026)	(0.026)	(0.026)		
EES-INAPP waves	2010/15	2010/15	2010/15		
# of obs. (treated + control)	2233	2253	2253		
t	0.877	0.567	0.622		
Common support	YES	YES	YES		
Balancing property	SATISFIED	SATISFIED	SATISFIED		
Matching ATT estimators	RADIUS	KERNEL	STRATIFICATION		
		ATT: EPS EF	FECTS		
	[1]	[2]	[3]		
	The firm	The firm	The firm		
	MAKES	MAKES	MAKES		
	ANY INN.	ANY INN.	ANY INN.		
EPS	0.117**	0.111**	0.114**		
	(0.052)	(0.057)	(0.075)		
EES-INAPP waves	2010/15	2010/15	2010/15		
# of obs. (treated + control)	555	587	587		
t	2.228	1.925	2.504		
Common support	YES	YES	YES		
Balancing property	SATISFIED	SATISFIED	SATISFIED		

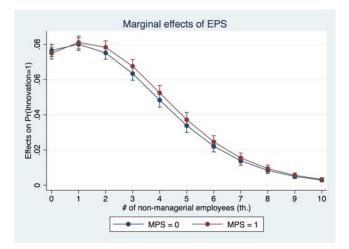
▶ Probs of adopting MPS/EPS conditional on $X_{f,w-1}$ + innovation in 2007-2009, firm belonging to a trade association, presence of ER, I/II level agreements, region and sector dummies, EPS/MPS

Standard interactions

[4]	[0]	[0]	1 41
			[4]
The firm	The firm	The firm	The firm
MAKES	MAKES	MAKES	MAKES
ANY INN.	ANY INN.	ANY INN.	ANY INN.
0.007	0.007	0.010	0.012
(0.012)	(0.012)	(0.012)	(0.012)
0.077**	0.057**	0.052*	0.052*
(0.032)	(0.033)	(0.032)	(0.026)
0.013	0.011	0.015	-0.003
(0.047)	(0.047)	(0.047)	(0.045)
-0.035	-0.045	-0.041	-0.046
(0.031)	(0.031)	(0.032)	(0.030)
NO	0.165***	NO	NO
	(0.017)		
NO	ΝΟ ΄	0.108***	NO
		(0.012)	
NO	NO	ΝΟ ΄	0.215***
			(0.009)
YES	YES	YES	YES
YES	YES	YES	YES
2010/15	2010/15	2010/15	2010/15
7051	7018	7018	7051
LOGIT	LOGIT	LOGIT	LOGIT
	ANY INN. 0.007 (0.012) 0.077** (0.032) 0.013 (0.047) -0.035 (0.031) NO NO NO YES YES 2010/15 7051	THE FIRM MAKES THE FIRM MAKES ANY INN. ANY INN. 0.007 0.007 (0.012) (0.012) 0.077** 0.057** (0.032) (0.033) 0.013 0.011 (0.047) (0.047) -0.035 -0.045 (0.031) (0.031) NO NO NO NO YES YES YES YES YES YES 2010/15 2010/15 2010/15 2010/15	THE FIRM THE FIRM THE FIRM THE FIRM MAKES MAKES MAKES ANY INN. ANY INN. ANY INN. 0.007 0.007 0.010 (0.012) (0.012) (0.012) 0.077** 0.057** 0.052* (0.032) (0.033) (0.032) 0.013 0.011 0.015 (0.047) (0.047) (0.047) -0.035 -0.045 -0.041 (0.031) (0.031) (0.032) NO 0.165*** NO (0.017) (0.012) NO NO NO NO YES YES YES YES YES YES YES YES YES 2010/15 2010/15 2010/15 2010/15 2010/15 2010/15

Multi-layering on process and product innovation

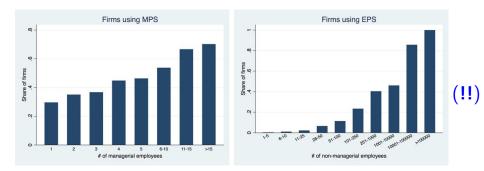
	[1]	[2]	[3]	[4]	[5]	[6]
	The firm	The firm	The firm	The firm	The firm	The firm
	MAKES	MAKES	MAKES	MAKES	MAKES	MAKES
	PROCESS	PRODUCT	PROCESS	PROCESS	PRODUCT	PRODUCT
	INN.	INN.	INN.	INN.	INN.	INN.
			MPS=0	MPS=1	MPS=0	MPS=1
Only MPS	0.012	0.003				
	(0.012)	(0.011)				
(β_2) Only EPS	0.077***	0.052*				
, .	(0.025)	(0.028)				
(β_3) MLPS	0.076**	0.088***				
,	(0.029)	(0.032)				
EPS (instrumented)			4.395***	2.761*	3.152***	2.801*
, , ,			(0.248)	(1.698)	(0.880)	(1.519)
$H_0: \beta_3 - \beta_2 = 0 [p-value]$	[0.972]	[0.356]	. ,			
Individual-based PRP	-0.049*	-0.011	-1.534***	-0.905	-0.036***	-0.917*
	(0.025)	(0.027)	(0.112)	(0.579)	(0.322)	(0.526)
Innovation in 2007-09	0.177***	0.223***	0.209***	0.576***	0.558***	0.566**
	(0.009)	(0.008)	(0.101)	(0.164)	(0.156)	(0.156)
Other firm-level controls	YES	YES	YES	YES	YES	YES
Sector and region dummies	YES	YES	YES	YES	YES	YES
EES-INAPP waves	2010/15	2010/15	2010/15	2010/15	2010/15	2010/15
# of obs.	7369	7368	4244	3171	4242	3172
Estimation	LOGIT	LOGIT	IV-LOGIT	IV-LOGIT	IV-LOGIT	IV-LOGIT
			First	STAGE	First	STAGE
II-level agree.s in 2006 (sector avg.)			0.241***	0.233***	0.256***	0.249***
2 (0)			(0.066)	(0.067)	(0.066)	(0.067)

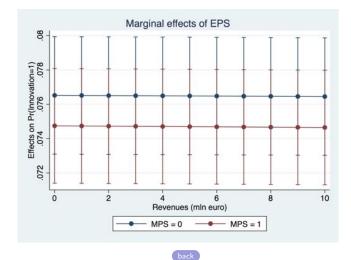

The 1/N problem

 PS may suffer from free riding both on working and peer-monitoring effort (Drago & Garvey, JLE 1998)

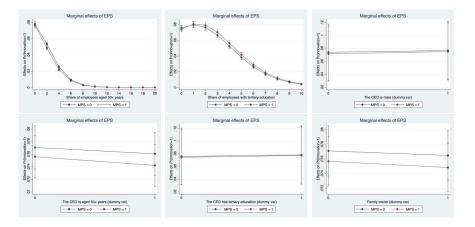
- the higher the # of workers (N), the greater is the dilution of incentives
- evidence is puzzling PS adoption by size
- Measure the conditional margins of EPS as

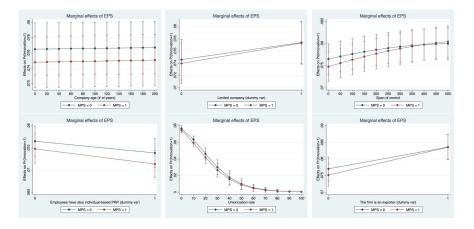
$$\begin{split} &\frac{\partial \operatorname{Pr}(\operatorname{Innovation}_{f,w}=1)}{\partial \operatorname{EPS}_{f,w-1}} = \frac{e^{\beta x}}{\left(1+e^{\beta x}\right)^2} \frac{\partial \left(\beta x\right)}{\partial \operatorname{EPS}_{f,w-1}} \\ &\text{at} \left[\operatorname{MPS}_{f,w-1}=\left(0\;1\right) | \,\# \text{ of non-managerial employees}_{f,w-1}, \operatorname{E}(\mathbf{X}_{f,w-1})\right] \end{split}$$

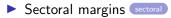

The 1/N problem: results



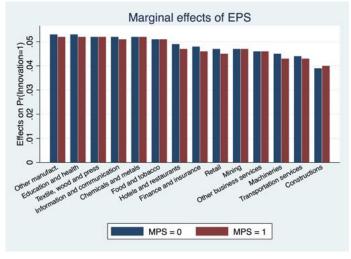
PS policy of firms, by size-class



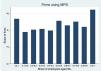

The 1/N problem: placebo

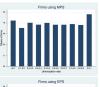


Conditional margins

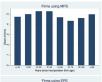

Conditional margins / cont'd

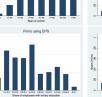
Sectoral margins





PS policies, by firm characteristics


12



Firms using MPS

