Key question 3: How to balance automated processing and human interpretation?

Key findings from work assignment 2 of Cedefop's Comparing VET-qualifications project

Marye Hudepohl Ockham-IPS, Netherlands

Claudia Plaimauer 3s, Austria

Overview

Goals & Research questions
Approach
Workflow
Conditions on the workflow
Operationalising the workflow
Testing an automated workflow
Results of the testing exercise
Conclusions & Recommendations
Discussion

Goals & Research questions

Goal:

Design and test an automated workflow (prototype) for comparing learning outcomes (LOs) descriptions included in national qualification with the ESCO KSC skills pillar.

Research questions:

How can digital technologies support the gathering,	structuring
and analysis of VET qualifications?	

- __How can digital technologies address the linguistic challenges involved?
- __What role could ESCO play in an automated comparison of VET qualifications?

Approach

Desk research, expert consultations

__Propose a workflow;

__Identify existing/emerging digital technologies for potential use;

Prototype development

__Select the most promising technologies;

__Identify and tackle encountered challenges, tailoring existing applications in a trial and error approach;

Prototype testing

__Compare LOs of one selected VET qualification against full set of ESCO skills;

Workflow (1/3)

Access national qualifications

___ Pre-process national qualifications as well as reference point or system;

Parse LO descriptions

- __ Text segmentation;
- __ Part-of-speech tagging ('chunking');

Normalise detected text segments

____"Translate" text segments into taxonomy concepts;

Map normalised text segments onto reference point or system

Registering overlap and divergence.

Workflow (2/3)

Provide access to national qualifications in machine readable form

Pre-processing of reference point

NQ 1

NQ 2

NQ 3

Normalise detected learning outcomes for every national qualification

Workflow (3/3)

Map normalised national qualification onto reference point

				1
RP	NQ 1	NQ 2	NQ3	10
Skill 1	yes	yes	no	ikill
Skill 2	yes	no	yes	by s
Skill 3	yes	no	no	sed
Skill 4	no	no	no	pre
Skill 5	no	yes	yes	s, ex efere
Skill 6	no	no	no	97 J
Skill 7	no	no	yes	shared and diverging LOs, expressed by skills concepts of the reference point
Skill 8	no	no	yes	diver pts
Skill 9	no	yes	no) puc
Skill 10	no	no	no	o pa
Skill 11	no	no	no	shai
Skill 12	no	no	no	
				unmappable LOs, expressed in free text
				unm express

Conditions on the workflow

Ideally the digital tool should have the ability to

__process different text formats;
__identify vertical dimension of learning outcomes;
__parse natural language;
__process different languages;

__process different languages;

__use open-access software;
__not be too demanding to operate.

Operationalising the workflow (1/2)

Selection of already available tools:

Natural Language Toolkit (NLTK) for working with text data	a;
Python (Anaconda Navigator) as programming language;	
Pandas for working with tabular data ('dataframes');	

Trial-and-error approach to tailoring these tools identified several challenges:

It is very time consumi	ng to make	e already	existing	coding	exampl	es
fit the needs of our workf	low;	-	_	_	_	

- __Proper feature detection is impossible without supplementing ESCO with additional synonym dictionaries;
- __Development of automated classifier needs manually pre-processed training material.

Operationalising the workflow (2/2)

Incorporate suggestions and feedback from experts

- __Aim at supporting rather than fully automating the process;
- __Feasibility of integrating machine learning depends on amount and diversity of data to be processed;
- __Implementing a machine learning approach should require significantly less efforts than doing the comparison manually;

Adapted approach to developing a prototype

- __Narrow focus on certain processing subtasks;
- __Use whole reference system (ESCO skills) rather than pre-selected reference points (occupational skills profiles) only.

Testing of the workflow

Test files / source data:

__Short LO descriptions and ID's for Dutch ICT service technician (core tasks / work processes);

__Short KSC descriptions and ID's from (full) ESCO KSC skills pillar (v103).

Results of the testing excercise (1/4)

Frequency analysis (single tokens)

__6,571 unique tokens in ESCO, 35 in qualification; __0.87% of ESCO tokens high-frequency, 46.2% only occur once;

__most-common terms are generally action verbs, mid-frequency terms generally more context-defining.

High-frequency (top5)	Mid-frequency	Single-Occurence
manage	digital	herbicide
equipment	facilities	hormone
operate	communication	mistelle
maintain	compliance	monogramprinting
perform	conditions	habits

Results of the testing exercise (2/4)

Token / Term	ID	LO description	KSC description	Linked to ESCO profile(s)
connections	B1- K1	Installing and maintaining hardware, software and connections	inspect for unauthorised connections	meter reader.
connections	B1- K1- W3	Realize connections	inspect for unauthorised connections	meter reader.
installing	B1- K1	Installing and maintaining hardware, software and connections	estimate costs of installing telecommunication devices	telecommunications engineer; specialised seller; telecommunications equipment specialised seller.
maintaining	B1- K1	Installing and maintaining hardware, software and connections	assume responsibility for maintaining a safe ship environment	fleet commander; marine surveyor.

Results of the testing exercise (3/4)

Frequency analysis (bigrams)

- __23,852 bigrams in ESCO, 28 in qualification;
- __Less than 1% (ESCO) occur more than 10x, 87.6% only occur once.

Results of the testing exercise (4/4)

Bigram	LO description	KSC description	Linked to ESCO profile(s)
incident reports	Handling of incident reports	process incident reports for prevention	chemical metallurgist; process metallurgist; metal furnace operator; coking furnace operator; heat treatment furnace operator; metallurgist; mine rescue officer.
peripheral equipment	'Making systems, (peripheral) equipment and applications ready for use'	set up audiovisual peripheral equipment	camera operator; audio-visual technician; recording studio technician; broadcast technician.
peripheral equipment	'Replacement, repair and / or (dis) assembly of (parts of) systems and (peripheral) equipment'	explain characteristics of computer peripheral equipment	specialised seller; computer and accessories specialised seller.

Conclusions & Recommendations

Conclusions:

__At this moment, limited possibilities in terms of automated comparison of qualifications (machine learning);
__Proper feature detection (& matching) is impossible without supplementing ESCO with additional synonym dictionaries;

Recommendations with regard to ESCO

Enriching vocabulary	with stemmed	d versions of s	skills phrases;
----------------------	--------------	-----------------	-----------------

- __ Supplementing semantic structure to enable aggregations;
- __ Dissecting complex skills into enabling skills components;
- __ Consolidating terminology (e.g. summarising skills expressing the same meaning with different words under one concept).

Discussion

__Is it possible and also economically feasible to fully automate the comparison of VET qualifications?
 __How accurate / comprehensive / reliable would the results of an automated comparison of qualifications be?
 __If automation is only used to support a manual comparison of qualifications, how should tasks be distributed between man and machine?
 __What needs to be done to improve ESCO's suitability for NLP?

Thank you!

Marye Hudepohl

Ockham-IPS, Netherlands m.hudepohl@ockham-ips.nl ockham-ips.nl/

Claudia Plaimauer

3s Unternehmensberatung GmbH plaimauer@3s.co.at www.3s.co.at

