Key question 3: How to balance automated processing and human interpretation? Key findings from work assignment 2 of Cedefop's Comparing VET-qualifications project Marye Hudepohl Ockham-IPS, Netherlands Claudia Plaimauer 3s, Austria ### Overview | Goals & Research questions | |---------------------------------| | Approach | | Workflow | | Conditions on the workflow | | Operationalising the workflow | | Testing an automated workflow | | Results of the testing exercise | | Conclusions & Recommendations | | Discussion | ### Goals & Research questions #### Goal: Design and test an automated workflow (prototype) for comparing learning outcomes (LOs) descriptions included in national qualification with the ESCO KSC skills pillar. #### **Research questions:** | How can digital technologies support the gathering, | structuring | |---|-------------| | and analysis of VET qualifications? | | - __How can digital technologies address the linguistic challenges involved? - __What role could ESCO play in an automated comparison of VET qualifications? ### Approach ### Desk research, expert consultations __Propose a workflow; __Identify existing/emerging digital technologies for potential use; ### **Prototype development** __Select the most promising technologies; __Identify and tackle encountered challenges, tailoring existing applications in a trial and error approach; ### **Prototype testing** __Compare LOs of one selected VET qualification against full set of ESCO skills; ### Workflow (1/3) #### **Access national qualifications** ___ Pre-process national qualifications as well as reference point or system; ### **Parse LO descriptions** - __ Text segmentation; - __ Part-of-speech tagging ('chunking'); ### Normalise detected text segments ____"Translate" text segments into taxonomy concepts; ### Map normalised text segments onto reference point or system Registering overlap and divergence. ### Workflow (2/3) Provide access to national qualifications in machine readable form Pre-processing of reference point NQ 1 NQ 2 NQ 3 Normalise detected learning outcomes for every national qualification # Workflow (3/3) #### Map normalised national qualification onto reference point | | | | | 1 | |----------|------|------|-----|--| | RP | NQ 1 | NQ 2 | NQ3 | 10 | | Skill 1 | yes | yes | no | ikill | | Skill 2 | yes | no | yes | by s | | Skill 3 | yes | no | no | sed | | Skill 4 | no | no | no | pre | | Skill 5 | no | yes | yes | s, ex
efere | | Skill 6 | no | no | no | 97 J | | Skill 7 | no | no | yes | shared and diverging LOs, expressed by skills
concepts of the reference point | | Skill 8 | no | no | yes | diver
pts | | Skill 9 | no | yes | no |) puc | | Skill 10 | no | no | no | o
pa | | Skill 11 | no | no | no | shai | | Skill 12 | no | no | no | | | | | | | unmappable LOs,
expressed in free text | | | | | | unm express | | | | | | | ### Conditions on the workflow Ideally the digital tool should have the ability to __process different text formats; __identify vertical dimension of learning outcomes; __parse natural language; __process different languages; __process different languages; __use open-access software; __not be too demanding to operate. ### Operationalising the workflow (1/2) #### **Selection of already available tools:** | Natural Language Toolkit (NLTK) for working with text data | a; | |--|----| | Python (Anaconda Navigator) as programming language; | | | Pandas for working with tabular data ('dataframes'); | | # Trial-and-error approach to tailoring these tools identified several challenges: | It is very time consumi | ng to make | e already | existing | coding | exampl | es | |----------------------------|------------|-----------|----------|--------|--------|----| | fit the needs of our workf | low; | - | _ | _ | _ | | - __Proper feature detection is impossible without supplementing ESCO with additional synonym dictionaries; - __Development of automated classifier needs manually pre-processed training material. # Operationalising the workflow (2/2) #### **Incorporate suggestions and feedback from experts** - __Aim at supporting rather than fully automating the process; - __Feasibility of integrating machine learning depends on amount and diversity of data to be processed; - __Implementing a machine learning approach should require significantly less efforts than doing the comparison manually; #### Adapted approach to developing a prototype - __Narrow focus on certain processing subtasks; - __Use whole reference system (ESCO skills) rather than pre-selected reference points (occupational skills profiles) only. ### Testing of the workflow #### **Test files / source data:** __Short LO descriptions and ID's for Dutch ICT service technician (core tasks / work processes); __Short KSC descriptions and ID's from (full) ESCO KSC skills pillar (v103). ### Results of the testing excercise (1/4) ### Frequency analysis (single tokens) __6,571 unique tokens in ESCO, 35 in qualification; __0.87% of ESCO tokens high-frequency, 46.2% only occur once; __most-common terms are generally action verbs, mid-frequency terms generally more context-defining. | High-frequency (top5) | Mid-frequency | Single-Occurence | |-----------------------|---------------|------------------| | manage | digital | herbicide | | equipment | facilities | hormone | | operate | communication | mistelle | | maintain | compliance | monogramprinting | | perform | conditions | habits | # Results of the testing exercise (2/4) | Token /
Term | ID | LO
description | KSC description | Linked to ESCO
profile(s) | |-----------------|------------------|---|--|--| | connections | B1-
K1 | Installing and maintaining hardware, software and connections | inspect for
unauthorised
connections | meter reader. | | connections | B1-
K1-
W3 | Realize
connections | inspect for
unauthorised
connections | meter reader. | | installing | B1-
K1 | Installing and maintaining hardware, software and connections | estimate costs of installing telecommunication devices | telecommunications
engineer; specialised
seller;
telecommunications
equipment
specialised seller. | | maintaining | B1-
K1 | Installing and maintaining hardware, software and connections | assume
responsibility for
maintaining a safe
ship environment | fleet commander;
marine surveyor. | ### Results of the testing exercise (3/4) ### Frequency analysis (bigrams) - __23,852 bigrams in ESCO, 28 in qualification; - __Less than 1% (ESCO) occur more than 10x, 87.6% only occur once. # Results of the testing exercise (4/4) | Bigram | LO description | KSC description | Linked to ESCO profile(s) | |-------------------------|--|--|---| | incident
reports | Handling of incident reports | process incident
reports for
prevention | chemical metallurgist; process metallurgist; metal furnace operator; coking furnace operator; heat treatment furnace operator; metallurgist; mine rescue officer. | | peripheral
equipment | 'Making systems,
(peripheral) equipment
and applications ready
for use' | set up audiovisual
peripheral
equipment | camera operator;
audio-visual
technician; recording
studio technician;
broadcast technician. | | peripheral
equipment | 'Replacement, repair and / or (dis) assembly of (parts of) systems and (peripheral) equipment' | explain
characteristics of
computer
peripheral
equipment | specialised seller;
computer and
accessories specialised
seller. | ### Conclusions & Recommendations #### **Conclusions:** __At this moment, limited possibilities in terms of automated comparison of qualifications (machine learning); __Proper feature detection (& matching) is impossible without supplementing ESCO with additional synonym dictionaries; ### **Recommendations with regard to ESCO** | Enriching vocabulary | with stemmed | d versions of s | skills phrases; | |----------------------|--------------|-----------------|-----------------| |----------------------|--------------|-----------------|-----------------| - __ Supplementing semantic structure to enable aggregations; - __ Dissecting complex skills into enabling skills components; - __ Consolidating terminology (e.g. summarising skills expressing the same meaning with different words under one concept). ### Discussion __Is it possible and also economically feasible to fully automate the comparison of VET qualifications? __How accurate / comprehensive / reliable would the results of an automated comparison of qualifications be? __If automation is only used to support a manual comparison of qualifications, how should tasks be distributed between man and machine? __What needs to be done to improve ESCO's suitability for NLP? ### Thank you! #### Marye Hudepohl Ockham-IPS, Netherlands m.hudepohl@ockham-ips.nl ockham-ips.nl/ #### Claudia Plaimauer 3s Unternehmensberatung GmbH plaimauer@3s.co.at www.3s.co.at